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L E l T E R  TO T H E  EDITOR 

Morphology of the interfacial patterns growing from unstable 
initial states in crystal growth models 

Debashish ChowdhurytS 
lnstitut fur Theoretische Physik, Universit i t  zu Koln, Ziilpicher Strasse 7 7 ,  D-5000 Koln 
41. Federal Republic of Germany 

Received 1 1  June 1987 

Abstract. Using the Walsh-Fourier transform of the interface function we introduce a new 
method for the analysis of the morphology of the complex interfacial patterns evolving 
with time on discrete lattices in a wide class of physical systems including crystal g rok th  
models. For the crystal growth models we also generalise an  old technique for characterising 
the interfacial patterns on small length scales t o  patterns evolving from initial states far 
from equilibrium. 

Formation and growth of fractal patterns (Stanley and Ostrowsky 1985) as well as 
non-fractal patterns (Langer 1980) in physical systems has become one of the main 
fields of interdisciplinary research during the last few years. The growth of the domains 
of up  (or down) spins in an  k ing  model following an  instantaneous quench from a 
very high temperature Th to a low temperature T, below the coexistence curve is a 
prototype example of freely equilibrating model systems evolving from unstable initial 
states where the relevant degrees of freedom are random (Gunton et a1 1983). Except 
for the average linear domain size R (  t )  and the scaling form of the structure function 
very little attention has been paid so far to the detailed morphology of the interfacial 
structure of such growing patterns. The growing surface profile of the Eden model 
(Plischke and  Racz 1985, Kardar et a1 1986, Zabolitzky and Stauffer 1986, Hirsch and  
Wolf 1986, Wolf and Kertesz 1987) and that of the interfaces in directional solidification 
(Langer 1980) and in the Hele-Shaw cell (Bensimon et a1 1986) has provided at least 
some insight into the morphology of some growing interfacial patterns. The main aim 
of this letter is to introduce two methods of analysing the morphology of interfacial 
patterns; while one of the methods characterises the global structures of the interfaces 
the other characterises the same patterns on short length scales. Most of our discussions 
will be based on the solid-on-solid (SOS) model as an example. Since SOS type models 
have been very successful in the study of crystal growth (Gilmer 1980) we believe that 
the techniques introduced in this letter will provide new tools for the investigation of 
the shape of more complex and more realistic systems. 

Since neither ‘droplets’ of opposite spins nor ‘overhangs’ are allowed in the SOS 

model, the interface separating the ‘up’ spins from the ‘down’ spins can be represented 
as a single-valued function z =f( i ) ,  where i = 1, . . . , N is the coordinate labelling the 
lattice sites in the ( d  - 1)-dimensional hyperplane transverse to the z direction. The 
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efecfive Hamiltonian for the SOS model in d dimensions is given by (Muller-Krumbhaar 
1978) 

3 r = J L d - ’ + ( J / 2 )  c lf(i)-.f(j)l (1) 
“ I )  

where the sum (ij) denotes a sum over nearest-neighbour columns i and j. It is 
straightforward to verify that the ground state of the SOS model corresponds to a flat 
smooth interface, i.e. f( i) = constant for all i. From now onwards, we shall focus our 
attention only on d = 2 and denote the direction perpendicular to the z direction by 
x. I t  is well known that for the two-dimensional SOS model the roughening temperature 

Our Monte Carlo algorithm for studying the dynamical evolution of the SOS model 
is analogous to the Glauber single spin-flip dynamics rather than Kawasaki spin- 
exchange dynamics. Therefore Cf( i )  is not conserved during the dynamical evolution 
of the SOS model. The initial random configuration f( i )  (Ocf( i )  c M for 1 e i C N )  
is created using a random number generator. Obviously such a configuration is very 
far from the equilibrium configuration corresponding to a low temperature T. Let us 
assume that the spins below the interface are all ‘up’ and those above are all ‘down’. 
A periodic boundary condition is applied along the x direction so that f( N + 1) =f( 1). 
Then ‘flipping’ an Ising spin at i = k just below the interface is equivalent to reducing 
the height f ( k )  by unity. Similarly, ‘flipping’ an Ising spin at i = k just above the 
interface is equivalent to increasing the height f( k) by unity. Note that since no island 
is allowed in the SOS model, only the spins just above and just below the interface are 
allowed to flip. The Monte Carlo scheme for updating the variablesf( i) is very similar 
to the usual Metropolis algorithm. If the proposed energy change AE is less than or 
equal to zero, then the flipping is carried out; otherwise the flipping is carried out with 
probability exp(-AE/k,T) (Swendsen 1977). Recently Stauffer and Jan (1987) have 
investigated a growth model where the interface is modelled by self-avoiding walks. 
A crucial difference is the possibility of lateral growth in that model which contributes 
a non-linear term to the differential equation describing the growth process. Moreover, 
unlike the SOS model, overhangs are allowed in that work. 

Let us now analyse the morphology of the interface of the SOS model during its 
evolution with time. Two quantities which have received some attention in several 
related contexts in the past are the length L ( t )  and the width W ( t )  of the interface. 
Our results on the L( t )  and W (  t )  of the SOS model and their physical interpretations 
will be reported elsewhere (Chowdhury 1987). In this letter we shall investigate two 
other features of the interface which have received very little attention so far in the 
literature. 

An interface may be very ‘regular’ (not necessarily flat) or ‘irregular’ up to a certain 
extent. The question we pose now is: how ‘irregular’ or ‘noisy’ is an interface at a 
given instant of time t during its evolution? In the continuum theories (see, for example, 
Sarkar and Jensen (1987) and references therein) the Fourier transform of the interface 
function f ( . x ;  t )  is given by f ( x ;  1 )  = Z c k ( t )  exp(ikx) where c k ( t )  is the amplitude of 
the kth plane wave ‘mode’ at time t.  Therefore, the time evolution of the interface can 
be described in terms of the corresponding time evolution of the Fourier coefficients 
c k ( t ) .  The larger is the number of modes for which amplitude ck # 0 the noisier is the 
interface. 

Let us now generalise the Fourier transform method appropriately for the discrete 
model (1). Since computer simulations as well as other numerical investigations are 

T R  = 0. 
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almost always carried out on a discrete lattice, it is more convenient to use the 
Walsh-Fourier transform where the exponential functions exp(ikx) are replaced by 
the Walsh functions & ( X )  (Harmuth 1972, Lord and Wilson 1984). Thus, the Walsh- 
Fourier transform of a function f ( x ;  1 )  is given by f ( x ;  t )  = 2 a k (  t ) D k ( X ) .  Therefore 
the motion of the interface on a discrete lattice can be described in terms of the time 
evolution of the Walsh-Fourier coefficients 0k.t). The Walsh functions D k ( X )  ( k  = 
0,1,2,. . .) are defined by 

D , ( x )  = 1 

DI ( x )  = sgn( sin T X )  

D, ( x )  = sgn( cos j r x )  

for all - + < x ~ f  

for j = 2", n > 0 

and 

D m o n ( x )  = D m ( x ) D n ( x )  

where m O n  denotes the operation modulo 2 addition of the binary representations 
of two integers m and n. For example, 0, = D4DzDl ,  DI2 = DloDb. 

The Walsh-Fourier transform is particularly useful for functions f'( x )  which are 
stepwise discontinuous functions on 2' intervals. Let us consider the SOS model with 
N = 8, so that the height of the interface f ( x )  is a stepwise discontinuous function 
over the 2p intervals with p = 3. The interval of x can be squeezed or stretched so that 
the eight points are within the interval between -4 and f. For example, the Walsh 
functions D k ( x )  for k = 0,1,2, . . . , 8  are shown in figure 1. 

We have monitored the coefficients ak(  t )  as a function of time t where t is measured 
in units of Monte Carlo steps (MCS) per site. Some of the a,(?) are shown in figure 
2. Since the interface is perfectly flat only at T = 0 ,  l ao l< l  at t=any  non-zero 
temperature. Therefore, at T > 0 the amplitude of not only the k = 0 mode but also 
that of several other modes remain non-zero at t =CO. Moreover, since each of the 

0, =l+tFtF 
+- 

-112 0 It.? 

Figure 1. Walsh functions Dk(x)  for k = 0-8 within the interval -$ s x i  f .  Note that there 
are some crucial differences between the Walsh functions and the corresponding sine 
functions. 
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Figure 2. Walsh coefficients aL(i) for the S O S  model at T=O with N = 8 ,  plotted as a, 
(x) ,  a> (O) ,  a3 (*)  and a4 (0) for M = 2 5 6  and as a, (O), a) (a) and a4 ([?) for M = 2 6 5 .  
Note that the heights were measured with respect to the mean height to obtain the data 
for M = 265 and therefore the corresponding a. for M = 265 were zero for all I. 

Walsh functions is a superposition of several sine waves the relaxation of the Walsh 
coefficients is far from exponential. Indeed, the larger is k the smaller is the number 
of sinusoidal waves required to reproduce a Walsh function and the closer is the 
relaxation to exponential decay. 

The method described above can also be generalised to three-dimensional systems. 
For the three-dimensional SOS model, for example, the two-dimensional interface 
f ( x ,  y ;  t )  can be expanded in terms ofthe two-dimensional Walsh functions D,,(x, y )  = 
D,(x )D, (y ) .  Since our model does not incorporate bulk as well as surface diffusion 
processes it is not directly applicable to the relaxation of real crystal surfaces (Herring 
1950, Mullins 1959, Maiya and Blakely 1967, Hoehne and Sizmann 1971, Martin and 
Perraillon 1977, Villain 1986, Selke 1987). However, we would like to emphasise that 
these are the drawbacks of the simple example we have chosen, namely the SOS model, 
and not a shortcoming of our basic technique. 

The technique of the Walsh-Fourier transform can also be used for more compli- 
cated interfaces, for example, isolated droplets. For such interfaces although the 
interface f ( x )  is a multiple-valued function of x, it may be a single-valued function 
of the angle 6 in the (r, 6) coordinate system where the origin is at the ‘centre of 
mass’ of the interface. This property is utilised in the ‘characterisation of shape by 
geometric signature waveform’ (Kaye 1986). In such cases the angular resolution A 8  
plays the role of the lattice constant in the SOS model. The interface function r =f( 6) 
can now be expanded in terms of the Walsh functions and the corresponding Walsh- 
Fourier coefficients describe the dynamical evolution of the interface. 

Since the index k in D k ( X )  gives the number of zero crossings of Dkr the Walsh- 
Fourier analysis of the interface characterises the morphology on length scales begin- 
ning from the system size N down to the distance between the successive zero crossings 
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of DL,,.(x) where ak = 0 for all k > k,,,. Let us now introduce a method for investigat- 
ing only the local structure of the interface on a length scale of the order of a few 
lattice constants. For example, the morphology of the growing patterns in the kinetic 
Ising model can be described by monitoring the fraction of neighbouring lattice sites 
C,( t )  with n dissimilar species. For a square lattice, an up (down) spin can have n 
down (up) spin neighbours, where n can vary from n = 0 to n = 4. So far as only the 
sites along the interface in the SOS model are concerned, n varies between 1 and 3. 
We shall consider only the interfacial sites on one side of the interface, i.e. either only 
the sites occupied by the 'up' spins or only by the 'down' spins. Accordingly, the 
interfacial sites can be in one of the three energy levels (2n -4)J, with n = 1 , 2 , 3 .  
Similar ideas have been applied earlier (Jackson 1975) for characterising the equilibrium 
structure of the crystal-melt interface. In this letter we have generalised this approach 
to the study of the interfaces growing from initial states which are very far from 
equilibrium. We have monitored the fractions C,,( t )  as a function of time t (figure 3). 

We conclude that the Walsh-Fourier coefficients yield a measure of the noise level 
in the interfacial pattern on discrete lattices. The relaxation of these Walsh modes is 
non-exponential. We have also demonstrated that the fractions C,, ( t )  of dissimilar 
neighbours provide information on the local structure of the interfaces. Details of the 
results obtained by the applications of these techniques to various different models 
will be reported elsewhere (Chowdhury 1987). 

It is my great pleasure to thank D Stauffer and J D Gunton for useful discussions. 
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Figure 3. The fractions C,(t)  for the SOS model at T=O with N = 512, plotted as C, (e), 
C, (H) and C3 (e) for M = 128 and as C ,  (O), C, (0) and C, (0) for M = 256. 
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Part of this work was done at the Temple University where the idea of this work first 
originated. I am indebted to D Stauffer for a critical reading of the manuscript. 

References 

Bensimon D, Kadanoff L P, Liang S, Shraiman B and Tang C 1986 Reo. Mod.  Phys. 58 1977 
Chowdhury D 1987 J.  Stat. Phys. in press 
Gilmer G H 1980 Science 208 355 
Gunton J D, San-Miguel M and Sahni P S 1983 Phase Transitions and Critical Phenomena vol 8, ed C Domb 

Harmuth H F 1972 Transmission of Information by Orthogonal Functions (Berlin: Springer) 
Herring C 1950 J.  Appl. Phys. 21 301 
Hirsch R and Wolf D E 1986 J.  Phys. A: Math. Gen.  19 L251 
Hoehne K and Sizmann R 1971 Phys. Status Solidi a 5 577 
Jackson K A 1975 Crystal Growth and Characrerimtion ed R Ueda and J B Mullin (Amsterdam: North- 

Kardar M ,  Parisi G and Zhang Y C 1986 Phys. Rev. Left. 56 889 
Kaye B H 1986 Fragmentation, Form and Flow in Fractured Media ed R Engleman and Z Jaeger (Bristol: 

Langer J S 1980 Reo. Mod. Phys. 52  1 
Lord E A and Wilson C B 1984 The Mathematical Dem-iption ofshape and Form (Chichester: Ellis Horwood) 
Maiya P S and Blakely J M 1967 J.  Appl. Phys. 38 698 
Martin G and Perraillon B 1977 Surf: Sci. 68 5 
Muller-Krumbhaar H 1978 Current Topics in Materials Science vol 1, ed E Kaldis (Amsterdam: North- 

h4ullins W W 1959 J .  Appl. Phys. 30 77 
Plischke M and Racz Z 1985 Phys. Rev. A32 3825 
Sarkar S K and Jensen M H 1987 Phys. Rev. A35 1877 
Selke W 1987 J. Phys. C :  Solid State Phys. 20 L455 
Stanley H E and Ostrowsky N 1985 (ed) On Growth and Form: Fractal and Nonfracral Patterns in Physics 

(Dordrecht: Martinus Nijhoff) 
Stauffer D and Jan N 1987 Can.  J.  Phys. in press 
Swendsen R 1977 Phys. Rev. B 15 5421 
Villain J 1986 Europhys. Lett. 2 531 
Wolf D E and Kertesz J 1987 J.  Phys. A: Math. Gen.  20 L257 
Zabolitzky J G and Stauffer D 1986 Phys. Reo. A34 1523 

and J L Lebowitz (New York: Academic) p 269 

Holland) 

Adam Hilger) 

Holland) 


